Beginner PIC mistakes, and detective work

Step 1 in the Symbolics keyboard to PIC project was not as quick as I had hoped.

It was pretty easy to generate the reset pulse, and get the serial port to send a clock signal to the keyboard. I then was using an oscilloscope to look at the keyboard response, but various attempts to get the PIC code to light up LEDs in response didn’t work at all. In fact, I was being bitten by two bugs, which I used the PICkit 2 in-circuit debug to discover.

  1. An array overrun bug (it seems the default radix in MPASM is hex, so reading 16 bytes into a sixteen element array doesn’t work! Unfortunately, my byte counter was located after the array, was stomped directly from 6 to zero, missing the “decrement and skip if zero” termination test until the array covered well into register bank 1.) Safety tip of the day: put your counter before the array!
  2. Something not addressed in the early lessons: ANSEL. The RX/DT pin of the 16F690 is shared with AN11, and the low bits of PORT C driving the LEDs are shared with AN4 through AN7. That means, unless one clears the corresponding bit in the ANSEL registers, they read as digital 0, no matter what the RX data is, and no matter what the state of my PORT C output. Toggling RC5 with a read-modify-write operation was clearing my LEDs before I could see them. Read your data sheets carefully!

A few tips/gripes on the PICkit 2 in-circuit debugging experience

  1. At least for newbies like me, and probably for more complex applications, any ICD is a great puzzle solver. At US$45 plus shipping, it is a great deal.
  2. The white triangle on the PICkit 2 programmer goes to pin 6 (near the “ICSP” silkscreen) of the AC164110—mark a triangle there to make it more foolproof.
  3. The green execution arrow stops after the line marked with the red B. I.e., the instruction with the breakpoint on it gets executed before control comes back to the user. This is counter to my habits built up using the similar looking VBA debugger in Excel.
  4. With the 16F690, you get only one active ICD breakpoint. That’s much better than zero, of course.
  5. The W register indicator in the MPLAB IDE seems not to work (stuck at zero); look at the Special Function Register window instead.
  6. Another MPLAB IDE gripe: hovering over constants in code (such as a bit number) shows the value of the File Register at that constant address. Not so helpful when I want to check which bit position I am trying to flip.
  7. Modifying special function registers in the File Register window is evidently forbidden; modify them in the Special Function Register window.

Modifying special function registers directly is a real time-saver. Instead of downloading different code to set up the baud rate registers, I edit them by hand to experiment. (And, unfortunately, my Rev. C keyboard behaves differently at different clock rates! More to come on a separate page.)


Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: